Cancer Related Gene Identification via p-norm Support Vector Machine∗
نویسندگان
چکیده
This paper focuses on the feature selection in classification via a new version of support vector machine (SVM) named p-norm support vector machine (0 < p < 1). Different from the 2-norm in the standard linear SVM, the p-norm of the normal vector of the decision plane is used which leads to more sparse solution. By using the successive linear algorithm, we can get an approximate local optimal solution to our p-norm SVM. In addition, the lower bounds for the absolute value of nonzero components in every local optimal solution is established, which provides theoretical direction for the elimination of zero components in any numerical solution. The numerical experiments show that the p-norm SVM is effective in selecting relevant features, compared with the popular 1-norm SVM, 0-norm SVM and support vector machine-recursive feature elimination based (SVM-RFE).
منابع مشابه
Prediction of blood cancer using leukemia gene expression data and sparsity-based gene selection methods
Background: DNA microarray is a useful technology that simultaneously assesses the expression of thousands of genes. It can be utilized for the detection of cancer types and cancer biomarkers. This study aimed to predict blood cancer using leukemia gene expression data and a robust ℓ2,p-norm sparsity-based gene selection method. Materials and Methods: In this descriptive study, the microarray ...
متن کاملFeature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملAPPLICATION OF THE HYBRID HARMONY SEARCH WITH SUPPORT VECTOR MACHINE FOR IDENTIFICATION AND CALSSIFICATION OF DAMAGED ZONE AROUND UNDERGROUND SPACES
An excavation damage zone (EDZ) can be defined as a rock zone where the rock properties and conditions have been changed due to the processes related to an excavation. This zone affects the behavior of rock mass surrounding the construction that reduces the stability and safety factor and increase probability of failure of the structure. This paper presents an approach to build a model for the ...
متن کاملIdentification areas with inundation potential for urban runoff harvesting using the support vector machine model
Rainfall-runoff from urban areas is one of the available water resources, which is wasted due to lack of attention and proper management. Besides, urban runoff excess of drains capacity causing many problems including inundation and urban environmental pollution. Therefore, harvesting this runoff can provide a part of the required water in urban areas, and also reduce flood and urban inund...
متن کاملIdentification of Alzheimer disease-relevant genes using a novel hybrid method
Identifying genes underlying complex diseases/traits that generally involve multiple etiological mechanisms and contributing genes is difficult. Although microarray technology has enabled researchers to investigate gene expression changes, but identifying pathobiologically relevant genes remains a challenge. To address this challenge, we apply a new method for selecting the disease-relevant gen...
متن کامل